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Abstract: The article compares three methods for segmentation 

of environmental images. Hue and saturation values of the 

image pixels were used as the input values for the clustering. 

The methods that have been examined are K-medoid, Fuzzy C-

means and Gustafson-Kessel. Results of the fuzzy clustering 

methods were compared with the results obtained with method 

using the mean-shift algorithm.  

 

1. INTRODUCTION 

 

Image segmentation is a low-level operation that is crucial 

for the success of higher-level image processing operations 

such as recognition, semantic representation and 

interpretation. It can be defined as a process of partitioning 

an image into disjoint and homogeneous regions.  

Because of the increasing computer processing power and 

higher application demands, in the last decade the focus of 

the research has been shifted from gray image segmentation 

towards the color image segmentation [10]. Color uniformity 

is the most frequent criterion for partitioning color images 

[3]. For that purpose, the distribution of the pixel colors can 

be analyzed in the image plane [11][12] or in the color 

space. Zhang [2] devided methods into three categories: 

pixel-based methods, region-based methods and boundary-

based methods. Pixel- based methods group the pixels with 

similar features, such as color or texture, without 

considering the spatial relationship among pixel groups. 

Examples of these methods include clustering using adaptive 

K-means, K-medoid, Gustafson-Kessel and Fuzzy C-means 

[14], among others.  

Previous research [4] showed significant variations in 

sensitivity regarding detection of the small segments in an 

image. While some methods such as those using the Mean-

shift algorithm [10] showed high sensitivity to small 

segments, performance of some others such as K-means [16] 

was quite disappointing. The sensitivity is very important for 

applications dealing with the detection of small objects in 

large scenes such as, for example, surveillance of the 

landscape and target detection from the distance. 

Segmentation method that produces only large segments 

makes successful object detection and recognition impossible 

no matter what higher level image operations are used at 

latter processing stages. 

Choice of the color space used in a particular computer 

vision application is not a trivial task because different color 

spaces have different advantages and disadvantages [13]. 

Generally, it can be stated that traditional RGB color space 

is not convenient for this kind of applications due to the high 

correlation between color components. Although HSI (Hue, 

Saturation, Intensity) as well as HSV (Hue, Saturation, 

Value) color spaces has also some problems especially with 

the low saturation images, they are better choice for wide 

range of Computer Vision applications. After the clustering 

of the pixels in a color space, output is, generally, noisy 

segmentation with small regions scattered through the 

image. In order to obtain better segmentation results, spatial-

based postprocessing should be performed. 

In [2] the overview of different kinds of segmentation 

evaluation methods is presented. Depending on whether a 

human evaluator examines the segmented image visually or 

not, these evaluation methods can be divided into two major 

categories: Subjective  Evaluation and Objective Evaluation. 

In the objective evaluation category, some methods examine 

the impact of a segmentation method on the larger 

system/application employing this method, while others 

study the segmentation method independently. Zhang [2] 

divides objective evaluation methods into System-level 

Evaluation and Direct Evaluation. The direct objective 

evaluation can be further divided into Analytical Methods 

and Empirical Methods, based on whether the method itself 

or the results that the method generated are being examined. 

Finally, the empirical methods are divided into 

Unsupervised Methods and Supervised Methods, based on 

whether the method requires a ground-truth reference image. 

On contrary to the supervised objective evaluation, which are 

objective methods that require access to a ground truth 

reference (manually-segmented reference image), 

unsupervised objective evaluation, does not require 

comparison with a manually-segmented reference image. 

In this paper, we will try to investigate and evaluate three 

fuzzy clustering methods for the segmentation of 

environmental images taken from the long distance. Optimal 

number of clusters will be determined using the  



unsupervised objective evaluation, that is a proposed 

combined index for determining the optimal number of 

clusters. Region merging and other image processing in 

order to obtain larger regions after color clustering in HSV 

color space will not be presented because the focus is on the 

comparison of the methods and their applicability for the 

particular type of applications. This raw segmentation results 

as well as speed of each algorithm will be compared with a 

Mean shift algorithm [15] in order to find if these algorithms 

can improve performance of the applications targeting the 

segmentation of the enviromental images ie. natural images 

of the terrain taken from the airplane or helicopter. The rest 

of this paper is organized as follows. In section 2, algorithms 

used for the segmentation are presented. Also, a combined 

index for determining the optimal number of clusters is 

proposed. Section 3 gives the results of the algorithms and 

their comparison, which is followed by the discussion and 

conclusion in the section 4.    

 

2. METHODS  

 

2.1 K – medoid algorithm 

 

K – medoid algorithm belongs to the hard partitioning 

methods, like K – means [1]. The objective function of the 

algorithm is to partition the data set X into c clusters. From a 

nN   dimensional data set algorithm allocates each data 

point to one of c clusters to minimize the within – cluster 

sum of squares: 
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where iA is a set of data points in the i – th cluster and iv  is 

the mean for that points over cluster i. Equation (1) denotes 

a distance norm. The cluster centers are the nearest objects 

to the mean of data in one cluster. The function generates 

random cluster centers, so the number of clusters must be 

previously initialized. [1] The K – medoid algorithm is 

presented by steps in the table 1.  

 

Table 1. The K – medoid algorithm 

Given: data set X 

Choose: the number of clusters Nc 1  

Initialize: random cluster centers chosen from the data set X 

Repeat for l=1,2,… 

Compute the distances: 
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Select: points for a cluster with the minimal distances, they belong to that 

cluster 

Calculation of the fake cluster centers: 
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Ending: Calculate the partition matrix 

 

2.2 Fuzzy C – means algorithm 

 

Fuzzy C – means algorithm (FCM) [6] is based on 

minimization of an objective function called C – means 

functional, defined by Dunn [7]: 
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where   n
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c
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is a vector of cluster centers, which have to be determined, 

and ik  represents fuzzy partitions which can attain real 

values in [0,1].  
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is a squared inner – product distance norm. 

The minimization of the C – means functional (2) represents 

a non linear optimization problem. The simple iteration 

through the first - order conditions for stationary points of 

(2), is the fuzzy C –means algorithm. [1] 

By adjoining the constraint to J by means of Lagrange 

multipliers, the stationary points of the objective function is 

found: 
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and by setting the gradients of  J  with respect to U, V and 

  to zero. If kiDikA ,,02   and 1m , then 
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fcMVU , may minimize (2) only if  
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Equation (7) gives iv  as the weighted mean of the data 

items that belong to a cluster. The weights are the 

membership degrees. The value for the weighting parameter 

m is very important: if it approaches 1, the partition becomes 

hard, but if it approaches to infinity, the partition becomes 

maximally fuzzy.  

The FCM algorithm is a simple iteration through (6) and 

(7). It computes with the standard Euclidean distance norm, 

which induces hyperspherical clusters. Hence it can only 

detect clusters with the same shape and orientation, because 

the common choice of norm inducing matrix is: A=I or it 

can be chosen as a nn  diagonal matrix that accounts for 

different variances in the directions of the coordinate axes of 

X: 
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or A can be defined as the inverse of the nn  covariance 

matrix: 
1 FA , with 

  



N

k

T

kk xxxx
N

F
1

1                   (9) 

x denotes the sample mean of the data.  

There are three input parameters needed to run this function: 

number of clusters, fuzziness weighting exponent and the 

maximum termination tolerance. If not given, the last two 

parameters have their default value. [1] The Fuzzy C - 

means algorithm is presented by steps in the table 2. 

 

Table 2. The Fuzzy C – means algorithm 
Given: data set X 

Choose: the number of clusters Nc 1 , the weighting exponent 1m , 

the termination tolerance 0 , and the norm inducing matrix A. 

Initialize the partition matrix randomly, such that fcMU )0(
 

Repeat for l=1,2,… 

Compute the cluster means: 
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Compute the distances: 
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Update the partition matrix: 
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2.3 The Gustafson - Kessel algorithm 

 

In order to detect clusters of different geometrical shapes 

in one data set, Gustafson and Kessel extended the standard 

fuzzy C – means algorithm by employing an adaptive 

distance norm [5]. Each cluster has its own – norm inducing 

matrix iA , which yields the following inner – product norm: 
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Table 3. The Gustafson – Kessel algorithm 

Matrices iA  are used as optimization variables in the c – 

means functional, thus allowing each cluster to adapt the 

distance norm to the local topological structure of the data. 

Let A denote a c – tuple of the norm - inducing matrices: 

Given: data set X 

Choose: the number of clusters Nc 1 , the weighting 

exponent 1m , the termination tolerance 0 , and the norm inducing 

matrix A. 

Initialize the partition matrix randomly, such that fcMU )0(
 

Repeat for l=1,2,… 

Calculate the cluster centers: 
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Compute the cluster covariance matrices: 
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Add a scaled identity matrix: 
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Update the partition matrix: 
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A= ),...,,( 21 cAAA . The objective functional of the GK 

algorithm is defined by: 
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The objective function (11) cannot be directly minimized 

with respect to iA , since it is linear in iA . J can be made 

small by making iA  less positive definite, but iA  needs to 

be constrained in some way. Allowing the matrix iA  to vary 

with its determinant fixed corresponds to optimizing the 

cluster’s shapes while its volume remains constant: 

0,  iiA                        (12) 

where i  is fixed for each cluster. Using the Lagrange 

multiplier method, the following expression is obtained: 
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where iF  is the fuzzy covariance matrix of the i – th cluster 

defined by: 
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The algorithm detects the elongated clusters [1].  

The numerically robust GK algorithm described by  Babuška 

et al [9] is used for the clustering of test images. The 

Gustafson - Kessel algorithm is presented by steps in the 

table 3. 

 

2.4 The optimal number of clusters 

 

Haralick and Shapiro [8] proposed four criteria for a good 

segmentation: 

(i) Regions should be uniform and homogeneous with 

respect to some characteristic 

(ii) Adjacent regions should have significant differences 

with respect to the characteristic on which they are 

uniform 

(iii) Region interiors should be simple and without holes 

(iv) Boundaries should be simple, not ragged, and be 

spatially accurate 

The characteristics of objects in the image are examined by 

the first two criteria, and the last two are based on how likely 

each region is regarded as a single object. According to [2], 

the criterion (iv) is usually not appropriate for natural 

images. 

The approach in determining the optimal number of 

clusters is in defining the validity function which evaluates a 

complete partition. An upper bound for the number of 

clusters must be estimated )( maxc , and the algorithms have to 

be run with each  max,...,3,2 cc  [1]. For each partition the 

validity function provides a value such that the result of the 

analysis can be compared indirectly. A number of validity 

functions have been proposed by [1], and those are: Partition 

Coefficient (PC), Classification Entropy (CE), Partition 

Index (SC), Separation Index (S), Xie and Beni’s Index 

(XB), Dunn’s Index (DI) and Alternative Dunn Index (ADI). 

None of these indexes is perfect by oneself. The approach 

that is presented in this paper is based only on two indexes, 

an SC and S functions, which joint together evaluated the 

optimal number of clusters.  

Partition index SC is the ratio of the sum of compactness 

and separation of the clusters. It is a sum of individual 

cluster validity measures [1]: 

 
















c

i
c

k iki

N

j ij

m

ij

vvN

vx
cSC

1
1

2

1

2

)(


               (15) 

A lower value of SC indicates a better partition. 

Separation index S, on the contrary, uses a minimum - 

distance separation for partition validity [1]: 
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Figure 1. An example of finding optimal number of clusters for a test image: 

for K – medoid algorithm is c=10, for Fuzzy C – means c=8, and for Gustafson 

– Kessel c=10. 

 

Because of the diversity of SC and S indexes, we propose 

index that is the combination of both, SC and S. For SC, the 

difference )()1( cSCcSC   needed to be smaller then 0.05, 



to say that the optimal number of clusters was reached. As 

for S, )()1( cScS  , it was sufficient that the difference 

was smaller than 0.1. The number of clusters of the smaller 

index value calculated for SC and S, was taken into account. 

The optimal number of clusters was then increased by one 

)1( c . 

 

3. RESULTS 

 

Each algorithm, (K-medoid, Fuzzy C-means, Gustafson-

Kessel), was executed on the base of 50 environmental 

images. The images of natural, mainly landscape images 

were taken from long distances. The purpose was to 

distinguish person from the environment, what would not be 

so hard if the images were taken from not such big distance. 

Each algorithm, K-medoid, Fuzzy C-means, Gustafson-

Kessel, was performed on each of the 50 environmental 

images. Clustering was performed using the HSV color 

model: hue (H) and saturation (S) components were then 

used as the input data for the clustering process. The 

algorithms were performed for various numbers of clusters 

 12,...,3,2c and for that each number of clusters the 

validity function was obtained. Using the information 

obtained from the SC and S matrix, the optimal number of 

clusters was determined. After determinating the optimal 

number of clusters, the algorithm was performed once again, 

but this time only for the estimated optimal number of 

clusters. On figure 1 the SC and S functions are shown, as 

an example of finding optimal number of clusters. Optimal 

number is estimated observing the function graph and 

detecting the point at which the function values are 

stabilized, (as explained in 2.4). Figure 1 shows SC and S 

for one environmental image: for K – medoid algorithm the 

optimal number of clusters is c=10, for Fuzzy C – means 

c=8, and for Gustafson – Kessel c=10. 

Figure 2 shows the result of the segmentation for each 

method, for the same original image. 

Table 4 shows total results of all 50 images for each 

algorithm: mean values (meanC) and standard deviations for 

optimal number of clusters, minimal (meanL) and maximal 

(meanH) clusters. The optimal number of clusters is almost 

the same for each algorithm, but from the standard deviation 

of minimal and maximal clusters Fuzzy C-means can be 

indicated as the best option for detection of small objects in 

an image.  

The results of average processing time normalized 

according to the slowest method and the results of the 

calculated optimal number of clusters for 50 test images are 

presented in table 5. As it can be seen in case of one image, 

K-medoid is the fastest, Fuzzy C-means and Mean-Shift 

algorithm showed similar processing speed. Optimal number 

of clusters for 3 fuzzy methods was lower than number of 

clusters obtained with Mean Shift which must also be 

noticed because higher number of clusters implies higher 

processing time. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. The segmentation results: (a) K-medoid algorithm, (b) Fuzzy C – 

means algorithm, (c) Gustafson – Kessel algorithm, (d) the original image 



Table 4. The results for clustering and segmentation of 50 images 

 K-medoid Fuzzy C-means Gustafson-Kessel 

meanC(opt.num.) 6,84 6,66 6,74 

SD(opt.num) 2,57 2,21 1,98 

meanL(min.cl.) 4319,32 3881,60 4850,86 

SD(min.cl.) 4310,59 2793,50 2958,50 

meanH(max.cl.) 24783,30 21707,85 21089,51 

SD(max.cl.) 7972,12 6742,50 7886,24 

 

Table 5. Comparison results of average processing time and calculated 

optimal number of clusters for 50 test images. 

50 images 
Mean 

Shift 
K-medoid 

Fuzzy C-

means 

Gustafson-

Kessel 

OPT.NUMB.CL. 9,38 6,84 6,66 6,74 

TIME [sec] 0,51 0,41 0,53 1 

 

 

4. DISCUSSION AND CONCLUSION 

 

In this paper we have tried to research possible use of 

three fuzzy clustering methods for the segmentation of 

certain type of natural images dealing dominantly with the 

long distance images of non urban terrain. There have been 

developed many segmentation methods, but there is still no 

satisfactory performance measure, which makes it hard to 

compare them. We have proposed a combined index for 

determining the optimal number of clusters. There is no 

question that segmentation methods can be improved with 

further processing: segment merging, noise removal, etc. but 

here we have compared only raw results of the segmented 

images obtained after clustering of data in the chosen color 

space. Results of this “raw” segmentation using presented 

clustering methods showed that these methods can be 

competitive with other currently popular methods such as 

Mean Shift [15]. With the known number of clusters, 

processing speed can even faster although less clusters 

implies that there is a higher possibility that small segments 

will be merged with larger ones.  

Main problem of presented fuzzy clustering methods is 

previously known and that is time needed to determine 

optimal number of clusters. However, obtained results 

suggest that K-medoid and Fuzzy C-means methods have 

potential to produce fast segmentation results. Regarding the 

sensitivity to detection of small segments, results suggest 

that Fuzzy C-means method edges the other two methods.   

For our particular area of interest i.e. environmental 

images segmentation, there is a possibility of preprocessing 

expected optimal number of clusters (or interval of numbers) 

for particular terrain type which could significantly improve 

performance of these methods.  
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